Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.353
Filtrar
1.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719812

RESUMO

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Assuntos
Acetilglucosamina , Proteínas de Ligação a DNA , Antígeno Nuclear de Célula em Proliferação , Rad51 Recombinase , Reparo de DNA por Recombinação , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/metabolismo , Acetilglucosamina/metabolismo , Rad51 Recombinase/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fosforilação , Replicação do DNA , Ubiquitinação , Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , DNA/metabolismo , Células HEK293 , Raios Ultravioleta , Ligação Proteica , Glicosilação , Síntese de DNA Translesão
2.
Nat Commun ; 15(1): 3894, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719837

RESUMO

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Assuntos
Cádmio , Ligação Proteica , Proteínas Ligases SKP Culina F-Box , Cádmio/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação , Domínios Proteicos , Humanos , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
3.
Epigenetics Chromatin ; 17(1): 15, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725075

RESUMO

UHRF1 as a member of RING-finger type E3 ubiquitin ligases family, is an epigenetic regulator with five structural domains. It has been involved in the regulation of a series of biological functions, such as DNA replication, DNA methylation, and DNA damage repair. Additionally, aberrant overexpression of UHRF1 has been observed in over ten cancer types, indicating that UHRF1 is a typical oncogene. The overexpression of UHRF1 repressed the transcription of such tumor-suppressor genes as CDKN2A, BRCA1, and CDH1 through DNMT1-mediated DNA methylation. In addition to the upstream transcription factors regulating gene transcription, post-translational modifications (PTMs) also contribute to abnormal overexpression of UHRF1 in cancerous tissues. The types of PTM include phosphorylation, acetylation, methylationand ubiquitination, which regulate protein stability, histone methyltransferase activity, intracellular localization and the interaction with binding partners. Recently, several novel PTM types of UHRF1 have been reported, but the detailed mechanisms remain unclear. This comprehensive review summarized the types of UHRF1 PTMs, as well as their biological functions. A deep understanding of these crucial mechanisms of UHRF1 is pivotal for the development of novel UHRF1-targeted anti-cancer therapeutic strategies in the future.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Neoplasias , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Metilação de DNA , Animais , Ubiquitinação , Regulação Neoplásica da Expressão Gênica
4.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727267

RESUMO

The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA , Proteólise , Ubiquitinação , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Conformação Proteica , Animais , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ubiquitina-Proteína Ligases/metabolismo
5.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719850

RESUMO

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Assuntos
Proteínas de Bactérias , Septinas , Shigella flexneri , Transdução de Sinais , Ubiquitina , Ubiquitinação , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Interações Hospedeiro-Patógeno , Células HeLa , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
6.
Sci Rep ; 14(1): 10728, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730027

RESUMO

The purpose of this study was to explore the diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes (DEGs) and 806 Ubiquitin-related genes (UbRGs). After taking the intersection, we obtained 128 UbR-DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the main molecular functions and biological pathways related to AD. Furthermore, through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways within both the AD and normal groups. Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. Finally, we constructed a lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) regulatory network for AD based on six RUbR-DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted therapy in the population.


Assuntos
Doença de Alzheimer , Ubiquitinação , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Humanos , Perfilação da Expressão Gênica , Transcriptoma , Redes Reguladoras de Genes , Bases de Dados Genéticas
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731896

RESUMO

Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.


Assuntos
Interações Hospedeiro-Patógeno , Orthomyxoviridae , Ubiquitinação , Replicação Viral , Humanos , Orthomyxoviridae/metabolismo , Orthomyxoviridae/fisiologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Proteólise , Animais
8.
Biol Direct ; 19(1): 37, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734627

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (RCC) is the most common kidney tumor. The analysis from medical database showed that Scm-like with four MBT domains protein 2 (SFMBT2) was decreased in advanced clear cell RCC cases, and its downregulation was associated with the poor prognosis. This study aims to investigate the role of SFMBT2 in clear cell RCC. METHODS: The expression of SFMBT2 in clear cell RCC specimens were determined by immunohistochemistry staining and western blot. The overexpression and knockdown of SFMBT2 was realized by infection of lentivirus loaded with SFMBT2 coding sequence or silencing fragment in 786-O and 769-P cells, and its effects on proliferation and metastasis were assessed by MTT, colony formation, flow cytometry, wound healing, transwell assay, xenograft and metastasis experiments in nude mice. The interaction of SFMBT2 with histone deacetylase 3 (HDAC3) and seven in absentia homolog 1 (SIAH1) was confirmed by co-immunoprecipitation. RESULTS: In our study, SFMBT2 exhibited lower expression in clear cell RCC specimens with advanced stages than those with early stages. Overexpression of SFMBT2 inhibited the growth and metastasis of clear cell RCC cells, 786-O and 769-P, in vitro and in vivo, and its silencing displayed opposites effects. HDAC3 led to deacetylation of SFMBT2, and the HDAC3 inhibitor-induced acetylation prevented SFMBT2 from SIAH1-mediated ubiquitination modification and proteasome degradation. K687 in SFMBT2 protein molecule may be the key site for acetylation and ubiquitination. CONCLUSIONS: SFMBT2 exerted an anti-tumor role in clear cell RCC cells, and HDAC3-mediated deacetylation promoted SIAH1-controlled ubiquitination of SFMBT2. SFMBT2 may be considered as a novel clinical diagnostic marker and/or therapeutic target of clear cell RCC, and crosstalk between its post-translational modifications may provide novel insights for agent development.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Camundongos Nus , Ubiquitinação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Humanos , Acetilação , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Regulação Neoplásica da Expressão Gênica
9.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744826

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Assuntos
Proteína Huntingtina , Doença de Huntington , Animais , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Camundongos , Humanos , Modelos Animais de Doenças , Ubiquitinação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Mutação , Agregados Proteicos , Camundongos Transgênicos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios/metabolismo , Neurônios/patologia
10.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722278

RESUMO

Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana , Ubiquitina-Proteína Ligases , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Ligação a DNA , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células HeLa , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
J Transl Med ; 22(1): 445, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735939

RESUMO

BACKGROUND: Endometriosis, characterized by the presence of active endometrial-like tissues outside the uterus, causes symptoms like dysmenorrhea and infertility due to the fibrosis of endometrial cells, which involves excessive deposition of extracellular matrix (ECM) proteins. Ubiquitination, an important post-transcriptional modification, regulates various biological processes in human diseases. However, its role in the fibrosis process in endometriosis remains unclear. METHODS: We employed multi-omics approaches on two cohorts of endometriosis patients with 39 samples. GO terms and KEGG pathways enrichment analyses were used to investigate the functional changes involved in endometriosis. Pearson's correlation coefficient analysis was conducted to explore the relationship between global proteome and ubiquitylome in endometriosis. The protein expression levels of ubiquitin-, fibrosis-related proteins, and E3 ubiquitin-protein ligase TRIM33 were validated via Western blot. Transfecting human endometrial stroma cells (hESCs) with TRIM33 small interfering RNA (siRNA) in vitro to explore how TRIM33 affects fibrosis-related proteins. RESULTS: Integration of proteomics and transcriptomics showed genes with concurrent change of both mRNA and protein level which involved in ECM production in ectopic endometria. Ubiquitylomics distinguished 1647 and 1698 ubiquitinated lysine sites in the ectopic (EC) group compared to the normal (NC) and eutopic (EU) groups, respectively. Further multi-omics integration highlighted the essential role of ubiquitination in key fibrosis regulators in endometriosis. Correlation analysis between proteome and ubiquitylome showed correlation coefficients of 0.32 and 0.36 for ubiquitinated fibrosis proteins in EC/NC and EC/EU groups, respectively, indicating positive regulation of fibrosis-related protein expression by ubiquitination in ectopic lesions. We identified ubiquitination in 41 pivotal proteins within the fibrosis-related pathway of endometriosis. Finally, the elevated expression of TGFBR1/α-SMA/FAP/FN1/Collagen1 proteins in EC tissues were validated across independent samples. More importantly, we demonstrated that both the mRNA and protein levels of TRIM33 were reduced in endometriotic tissues. Knockdown of TRIM33 promoted TGFBR1/p-SMAD2/α-SMA/FN1 protein expressions in hESCs but did not significantly affect Collagen1/FAP levels, suggesting its inhibitory effect on fibrosis in vitro. CONCLUSIONS: This study, employing multi-omics approaches, provides novel insights into endometriosis ubiquitination profiles and reveals aberrant expression of the E3 ubiquitin ligase TRIM33 in endometriotic tissues, emphasizing their critical involvement in fibrosis pathogenesis and potential therapeutic targets.


Assuntos
Endometriose , Fibrose , Proteômica , Ubiquitinação , Humanos , Feminino , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Adulto , Ontologia Genética , Proteoma/metabolismo , Multiômica
12.
Elife ; 122024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738857

RESUMO

Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.


Assuntos
Fator de Iniciação 4A em Eucariotos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Ubiquitinação , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Animais , Biossíntese de Proteínas , Linhagem Celular Tumoral , Camundongos , Receptores de Interleucina-17
13.
Cell Death Dis ; 15(5): 331, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740775

RESUMO

Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aß1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, ßamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.


Assuntos
Doença de Alzheimer , Citocromos c , Mitocôndrias , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Animais , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Ratos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Peptídeos beta-Amiloides/metabolismo , Potencial da Membrana Mitocondrial , Ubiquitinação , Humanos , Apoptose , Morte Celular , Ratos Sprague-Dawley , Modelos Animais de Doenças , Endodesoxirribonucleases
14.
Cell Commun Signal ; 22(1): 259, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715050

RESUMO

Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.


Assuntos
Enzimas Desubiquitinantes , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Enzimas Desubiquitinantes/metabolismo , Animais , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Evasão Tumoral , Ubiquitinação , Evasão da Resposta Imune
15.
Biol Direct ; 19(1): 35, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715121

RESUMO

BACKGROUND: Ubiquitin-conjugating enzyme E2 N (UBE2N) is recognized in the progression of some cancers; however, little research has been conducted to describe its role in prostate cancer. The purpose of this paper is to explore the function and mechanism of UBE2N in prostate cancer cells. METHODS: UBE2N expression was detected in Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data, prostate cancer tissue microarrays, and prostate cancer cell lines, respectively. UBE2N knockdown or overexpression was used to analyze its role in cell viability and glycolysis of prostate cancer cells and tumor growth. XAV939 or Axin1 overexpression was co-treated with UBE2N overexpression to detect the involvement of the Wnt/ß-catenin signaling and Axin1 in the UBE2N function. UBE2N interacting with Axin1 was analyzed by co-immunoprecipitation assay. RESULTS: UBE2N was upregulated in prostate cancer and the UBE2N-high expression correlated with the poor prognosis of prostate cancer. UBE2N knockdown inhibited cell viability and glycolysis in prostate cancer cells and restricted tumor formation in tumor-bearing mice. Wnt/ß-catenin inhibition and Axin1 overexpression reversed the promoting viability and glycolysis function of UBE2N. UBE2N promoted Axin1 ubiquitination and decreased Axin1 protein level.


Assuntos
Proteína Axina , Sobrevivência Celular , Glicólise , Neoplasias da Próstata , Enzimas de Conjugação de Ubiquitina , Ubiquitinação , Animais , Humanos , Masculino , Camundongos , Proteína Axina/metabolismo , Proteína Axina/genética , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Via de Sinalização Wnt
16.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718120

RESUMO

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Assuntos
Inativação Gênica , Histonas , Proteínas do Grupo Polycomb , Ubiquitinação , Humanos , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Genoma Humano , Epigênese Genética , Mutação
17.
Sci Rep ; 14(1): 10160, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698045

RESUMO

How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Transporte , Regulador de Condutância Transmembrana em Fibrose Cística , Transporte Proteico , Proteínas de Transporte Vesicular , Humanos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitinação , Proteólise
18.
Nat Commun ; 15(1): 3789, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710693

RESUMO

The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.


Assuntos
Motivos de Aminoácidos , Microscopia Crioeletrônica , Proteínas Culina , Receptores de Interleucina-17 , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Culina/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Multimerização Proteica , Sequência Conservada , Ligação Proteica , Modelos Moleculares
19.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710705

RESUMO

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Assuntos
Argininossuccinato Sintase , Proliferação de Células , Fosfoglicerato Desidrogenase , Serina , Neoplasias de Mama Triplo Negativas , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo , Serina/biossíntese , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Animais , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Linhagem Celular Tumoral , Camundongos Nus , Ubiquitinação , Camundongos , Glicina/metabolismo
20.
Mol Cell ; 84(9): 1635-1636, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701740

RESUMO

In a recent publication in Nature, Xu et al.1 discovered a role of CRL5-SPSB3 ubiquitin ligase in promoting ubiquitination and degradation of nuclear cGAS, which prevents aberrant cGAS activation by genomic DNA and contributes to the maintenance of immune homeostasis.


Assuntos
Homeostase , Nucleotidiltransferases , Ubiquitinação , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Núcleo Celular/metabolismo , Proteólise , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA